On the Origin of Cores in Simulated Galaxy Clusters
نویسندگان
چکیده
The diffuse plasma that fills galaxy groups and clusters (the intracluster medium, hereafter ICM) is a by-product of galaxy formation. The present thermal state of this gas results from a competition between gas cooling and heating. The heating comes from two distinct sources: gravitational heating associated with the collapse of the dark matter halo and additional thermal input from the formation of galaxies and their black holes. A long term goal of this research is to decode the observed temperature, density and entropy profiles of clusters and to understand the relative roles of these processes. However, a long standing problem has been that cosmological simulations based on smoothed particle hydrodynamics (SPH) and Eulerian mesh-based codes predict different results even when cooling and galaxy/black hole heating are switched off. Clusters formed in SPH simulations show near powerlaw entropy profiles, while those formed in Eulerian simulations develop a core and do not allow gas to reach such low entropies. Since the cooling rate is closely connected to the minimum entropy of the gas distribution, the differences are of potentially key importance. In this paper, we investigate the origin of this discrepancy. By comparing simulations run using the GADGET-2 SPH code and the FLASH adaptive Eulerian mesh code, we show that the discrepancy arises during the idealised merger of two clusters, and that the differences are not the result of the lower effective resolution of Eulerian cosmological simulations. The difference is not sensitive to the minimum mesh size (in Eulerian codes) or the number of particles used (in SPH codes). We investigate whether the difference is the result of the different gravity solvers, the Galilean noninvariance of the mesh code or an effect of unsuitable artificial viscosity in the SPH code. Instead, we find that the difference is inherent to the treatment of vortices in the two codes. Particles in the SPH simulations retain a close connection to their initial entropy, while this connection is much weaker in the mesh simulations. The origin of this difference lies in the treatment of eddies and fluid instabilities. These are suppressed in the SPH simulations, while the cluster mergers generate strong vortices in the Eulerian simulations that very efficiently mix the fluid and erase the low entropy gas. We discuss the potentially profound implications of these results.
منابع مشابه
اندازهگیری نمایه عمق نوری خوشههای کهکشانی با استفاده از اثرسونیائف زلدوویچ جنبشی
baryonic matter distribution in the large-scale structures is one of the main questions in cosmology. This distribution can provide valuable information regarding the processes of galaxy formation and evolution. On the other hand, the missing baryon problem is still under debate. One of the most important cosmological structures for studying the rate and the distribution of the baryons is gal...
متن کاملOn the Origin of Cool Core Galaxy Clusters: Comparing X-ray Observations with Numerical Simulations
To better constrain models of cool core galaxy cluster formation, we have used X-ray observations taken from the Chandra and ROSAT archives to examine the properties of cool core and non-cool core clusters, especially beyond the cluster cores. Using an optimized reduction process, we produced X-ray images, surface brightness profiles, and hardness ratio maps of 30 nearby rich Abell clusters (17...
متن کاملThe Origin of Ripples in Cool Cores of Galaxy Clusters: Heating by MHD Waves?
We consider MHD waves as a heating source of cool cores of galaxy clusters. In particular, we focus on transverse waves (Alfvén waves), because they can propagate a longer distance than longitudinal waves (sound waves). Using MHD simulations, we found that the transverse waves can stably heat a cool core if the wave period is large enough (& 10 yr). Moreover, the longitudinal waves that are cre...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملFormation of Cool Cores in Galaxy Clusters via Hierarchical Mergers
We present a new scenario for the formation of cool cores in rich galaxy clusters based on results from recent high spatial dynamic range, adaptive mesh Eulerian hydrodynamic simulations of large-scale structure formation. We find that cores of cool gas, material that would be identified as a classical cooling flow based on its X-ray luminosity excess and temperature profile, are built from the...
متن کامل